A penalty decomposition method for rank minimization problem with affine constraints
نویسندگان
چکیده
منابع مشابه
Penalty Decomposition Methods for Rank Minimization
In this paper we consider general rank minimization problems with rank appearing in either objective function or constraint. We first establish that a class of special rank minimization problems has closed-form solutions. Using this result, we then propose penalty decomposition methods for general rank minimization problems in which each subproblem is solved by a block coordinate descend method...
متن کاملA Penalty Method for Rank Minimization Problems in Symmetric Matrices∗
The problem of minimizing the rank of a symmetric positive semidefinite matrix subject to constraints can be cast equivalently as a semidefinite program with complementarity constraints (SDCMPCC). The formulation requires two positive semidefinite matrices to be complementary. We investigate calmness of locally optimal solutions to the SDCMPCC formulation and hence show that any locally optimal...
متن کاملUsing an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints
In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...
متن کاملA Modified Penalty Function Method for Inequality Constraints Minimization
In this paper we introduce a modified penalty function (MPF) method for solving a problem which minimizes a nonlinear programming subject to inequality constraints. Basically, this method is a combination of the modified penalty methods and the Lagrangian methods. It treats inequality constraints with a modified penalty function and avoids the indifferentiability of max {x, 0}. This method alte...
متن کاملPenalty Decomposition Methods for $L0$-Norm Minimization
In this paper we consider general l0-norm minimization problems, that is, the problems with l0-norm appearing in either objective function or constraint. In particular, we first reformulate the l0-norm constrained problem as an equivalent rank minimization problem and then apply the penalty decomposition (PD) method proposed in [33] to solve the latter problem. By utilizing the special structur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2015
ISSN: 0307-904X
DOI: 10.1016/j.apm.2015.03.054